An Extended Data-Flow Architecture for Data Analysis and Visualization

Greg Abram and Lloyd Treinish
IBM Thomas J. Watson Research Center
Post Office Box 704
Yorktown Heights, NY 10598

gda@watson.ibm.comand 1loydt@watson.ibm.com

Abstract

Modular visualization environments utilizing a data-
Sflow execution model have become quite popular in recent
years, especially those that incorporate visual program-
ming tools. However, simplistic implementations of
such an execution model are quite limited when applied to
problems of realistic complexity, which negate the intu-
itive advantage of data-flow systems. This situation can
be resolved by extending the execution model to incorpo-
rate a more complete and efficient programming infras-
tructure while still preserving the virtues of "pure data-
flow". This approach has been used for the implementa-
tion of a general-purpose software package, IBM
Visualization Data Explorer.

Introduction

Over the last several years a number of software sys-
tems that provide "visual programming", which embodied
a notion of data-flow, have been implemented
[61[15][1114][11][13]{8]1[9]. They were created under the
premise that this paradigm was simple enough for users
that are not experienced programmers to build applica-
tions. It was further assumed that this approach would
greatly simplify the implementation and prototyping of
computer graphics, data analysis and visualization sys-
tems that are composed of varied and often complex tasks.
However, as the visualization community matured and the
users of these tools grew in their sophistication, efforts to
apply these systems to problems of realistic size and
complexity illustrated a number of deficiencies within the
typical implementations [12][3]. The challenge from the
perspective of developing tools for data analysis and visu-
alization based upon the data-flow paradigm is to preserve
the virtues of such an approach while trying to minimize
the inherent limitations embodied by the use of a naive
data-flow execution model for the visual programs. An
outline of the key advantages and disadvantages of the
data-flow architecture will establish these points. This
will serve as background for a discussion of an implemen-
tation that extends the idea of data-flow to include capabil-
ities necessary to support realistic problems, while con-
tinuing to supporting its traditional advantages.

Visual Programming and Visualization

The previously mentioned visualization environments
incorporate visual programming tools that allow complex
systems to be constructed as networks of atomic tasks.
For users with an idea of their goals and a basic under-
standing of the set of provided functions, the construction
of sophisticated applications is made simple and intuitive
-- programming by plumbing. The process of using these
tools closely matches the user's mental model of the com-
putation. In effect, the visual program is simply a graph-
ical representation of the process to be executed.

Visualization applications seem particularly well tai-
lored to the use of a visual programming paradigm.
Generally speaking, the atomic operations of the visual-
ization are well-defined and high-level so that sophisti-
cated visualizations can be created by relatively simple
networks of tools chosen from a predefined set. Figure 1
illustrates this idea for a program that imports data, com-
putes both an isosurface and a planar mapping, and renders
the results in a single image. Visualizations may be pa-
rameterized by the incorporation of inputs that relate in-
teractor widgets to network inputs. These inputs may be
represented with the visual program simply as modules
with no inputs. Instead, their inputs come asyn-
chronously from an associated "input device" or interactor
(e.g., a graphics user interface widget such as a slider).

Import
so-value Paosition Qrientation
Isosurface MaptoPlane
Collect
* Camera
Display

Figure 1. A visual program incorporating two visualization
techniques.

(See color plates, page CP-31)

1070-2385/95 $4.00 © 1995 IEEE

Data-flow Execution

In a true data-flow implementation, all modules are pure
functions (i.e., their outputs are fully defined by their in-
puts). Hence, processes are stateless with no side-effects
[2]. An examination of figure I leads to such an execu-
tion model. Imagine a set of available processes waiting
for their inputs from the processes upstream in the net-
work. In figure 1, the Collect module waits for inputs
from the Isosurface and MapToPlane modules. When
their inputs are received, they run, and when finished they
distribute their results to the modules waiting down-
stream. In figure 1, Import would send its results to the
waiting Isosurface and MapToPlane modules. In effect,
this execution model is entirely data-driven and top-down:
the execution of modules is dependent solely on the pas-
sage of data through the system.

Problems with Data-Flow Execution

While this simple data-flow execution model seems a
natural mechanism for the execution of visual programs, a
closer examination reveals that real-world problems are
more complex. In order to function efficiently, it is vital
that the system avoid unnecessary work. In general, there
are two reasons why modules present in a visual program
or {directed acyclic) graph may not need to be executed
when their turn comes: 1) their results are not actually re-
quired by a result of the network and 2) their inputs are
unchanged from the last time the module was executed
(i.e., the result will be the same).

Identifying Required Results

In reality, the outputs of a visualization network occur
in modules that have side-effects. They produce results
outside of the network itself such as the display of images
on a workstation or the creation of output files. Unless
the result of a module ultimately affects an input to a
module that produces a side-effect, that module does not
have to be executed (e.g., conditional execution -- see be-
low).

Eliminating modules that are not ancestors of modules
with side-effects can be done by pre-processing the net-
work before the actual data-flow network evaluation
commences. This is done by traversing the graph bot-
tom-up, beginning at each module known to have side-ef-
fects and flagging each module as it is encountered. Once
this is complete, modules that have not been flagged do
not have to be executed.

Conditional Execution

A much more difficult problem arises when condition-
als are incorporated in networks. Conditionals may be
used to offer the user a selection among several methods
of visualizing a data set. In figure 2, a Swizch module al-
lows either an isosurface or a mapping plane to be dis-
played, based on user preference.

264

Import
Iso-value Position Orientation
< & »
Isosurface MaptoPlane
User Choice——spd Switch
' Camera
Display

Figure 2. A visual program with a user choosing between two
visualization techniques.

In a simple data-flow execution model, this Switch
module will be executed when its inputs are available
(i.e., the results of the Isosurface and MapToPlane mod-
ules, and the value of the selection input). On execution,
the Switch module chooses whether to pass the Isosurface
or MapToPlane result to the output based on the selection
input. In the case of a pure data-flow model both the
Isosurface and MapToPlane modules execute before the
decision as to which will actually be used is known.
Since both operations can be computationally expensive,
the superfluous execution of both of them is very ineffi-
cient.

Again, this problem can be handled within the simple
data-flow execution module by an examination of the
graph prior to execution. In this case, the selection value,
which comes from an external source (e.g., an interactor
presented to the user) is essentially static, and known a
priori. Hence, the selection may be performed by a sim-
ple transformation of the graph: excising the Switch
module altogether, and substituting arcs from the selected
source (either Isosurface or MapToPlane) to each of the
modules that, in the original network, received the result
of the Switch module. This leaves the un-selected module
dangling. It and any of its ancestors that are therefore
made unnecessary will not be executed.

It should be noted that this approach fails when the se-
lection value is not static (e.g., it is determined elsewhere
in the network). Figure 3 illustrates this problem, when
the network selects either an isosurface or a set of vector
glyphs depending on whether the data are scalar or vector.
In this case, the selection value for the Switch module
cannot be determined before the execution of the graph.
Instead, the graph must be evaluated in stages: 1) deter-
mine the selection value, 2) determine the necessary input
to the Switch module and 3) evaluate the remainder of the
graph. Since dynamic inputs may themselves be de-
scended from other non-static inputs (e.g., computed in
the network), this process may have to be performed re-
peatedly.

Import

Iso-value
s *

Isosurface

y

Switch

v

Display

Quel
i

Inquire

Glyph

Camera

Figure 3. A visual program with computed input to a condi-
tional.

Iterative Re-Execution

Unlike the simple example in figure 1, most real visu-
alizations involve some form of iteration. This may ei-
ther be direct interaction, where the user is adjusting pa-
rameters of the visualization and observing their effect on
the resulting images, or animation, in which one or more
inputs to the network may vary from frame to frame.

In iterative applications, there are often major parts of
the network that are unaffected when input parameters are
modified. In figure 2, if the iso-value input to the
Isosurface module is changed, only the affected modules
and their descendents need to be executed. The output of
Import is not affected by the change. Hence, it can be re-
used, which avoids a superfluous access of data on disk.
The MapToPlane module also does not need to be exe-
cuted, since its inputs did not change either.

One way to implement this capability is via a caching
mechanism for partial results. Instead of immediately re-
executing when its inputs arrive, a module may first de-
termine whether its inputs have changed. If they have not
changed, it can simply retrieve its results from the cache.
Otherwise, the module re-executes, placing its new result
into the cache.

Data Explorer Approach

The IBM Visualization Data Explorer (or simply Data
Explorer) is a general-purpose software package for data
analysis and visualization. It has a client-server architec-
ture and a data-flow-driven execution model [9]. Data
Explorer has been implemented for Unix workstations
from Sun, Silicon Graphics, IBM, Hewlett-Packard, DEC
and Data General, and personal computers using OS/2.

Client-Server Architecture

The client process in this package is the graphics user
interface. It utilizes X Window and the Motif window
manager and is implemented in C++. The server process

265

operates as a computational "engine" and is implemented
in C. It may reside on the same or different systems than
the client. The server is controlled via a data-flow execu-
tive, which determines what tasks need to be executed
based upon user requests and schedules their execution.
The server accepts a well-defined protocol (a scripting lan-
guage), which is generated by the user interface. The ex-
ecutive can be operated independently of the user interface
via that scripting/programming language.

Uniform Data Model

One of the design criteria for Data Explorer was adapt-
ability to new applications and data, and the utilization of
multiple types of data simultaneously. Another was effi-
ciency for access among the functions that a user might
employ. Both of these requirements have been addressed
by building the module set on a foundation of an inte-
grated, discipline-independent data model [5]. The imple-
mentation of this data model describes and provides uni-
form access services for any data brought into, generated
by, or exported from the software for a number of interest-
ing classes of scientific, engineering and graphics data,
which can be described by shape (size and number of di-
mensions), rank (e.g., scalar, vector, tensor), type (float,
integer, byte, etc. or real, complex, quaternion), where the
data are located in space (positions), how the locations are
(topologically) related to each other (connections), mesh
dependency of data (i.e., node or cell center), nodes or cells
that may be invalid, user-defined metadata or aggregation
(e.g., hierarchies, series, polylines, composites, multi-
zone grids). It also supports those entities required for
graphics and imaging operations within the context of
Data Explorer (e.g., viewing camera, normals for shading,
etc.).

All operations on data within Data Explorer, indepen-
dent of a role in generating pictures, work with shared data
structures in memory via an uniform interface that is pre-
sented by the data model. This permits the same consis-
tent access to data independent of its underlying grid, type
or hierarchical structure(s). To minimize copying and re-
duce memory utilization, data communication among
subsequent operations is accomplished by passing point-
ers. In addition, sharing of these structures among such
operations is supported.

One result of this approach is easy integration of dis-
parate, multiple data sets, a requirement becoming more
common for many visualization problems (e.g., results of
observation and simulation, remote sensing from space
and ground truth, differing medical imaging modalities,
structural analysis, fluid flow and design data). This inte-
gration can take place without unnecessary conversion or
interpolation operations that would corrupt the data. An
example of this idea is shown in figure 4, where a number
of distinct atmospheric cloud parameters are shown simul-
taneously in a three-dimensional, earth-centered coordinate
system.

Visual Programming and Polymorphism

An important consequence of the unified method of data
handling is that operations in Data Explorer (modules) are
polymorphic, interoperable and appear typeless to the
user. This is in contrast to other available implementa-
tions, in which each class of supported data is handled
more or less independently and is utilized with a separate
set of modules.

Consider figures 5 and 6, which show a very simple ex-
ample of visual programming with Data Explorer. They
each contain a screen dump of the Visual Program Editor
with a 4-node network. The available modules are shown
in various categories on the left. A number of options
associated with creating and manipulating visual programs
as well as interaction with other aspects of both the Data
Explorer executive and user interface are available through
pull-down menus from the top of the Visual Program
Editor. The Import module reads specified data from a file
or pipe. The Isosurface module computes surfaces of con-
stant value. In this case, the third input has been speci-
fied with the number 4, which means that four surfaces at
four equally spaced values over the range of data will be
computed. The AutoColor module computes a linear hue-
based color map (blue to red) over the full range of the
data. The /mage module renders an image from the input
it receives and provides tools to interact with the rendered
image.

Figure 5. Simple Data Explorer Visual Program Applied to a
Regular Three-Dimensional Data Set.

The image in figure 5 shows four isosurfaces computed
from a three-dimensional stack of CAT scans of a human
spine, comprising a regular, rectilinear volume of cubes.
The image in figure 6 shows four contour lines computed
from ultraviolet intensities observed from a spacecraft in a
curvilinear, irregular grid of quadrilaterals. The polymor-
phic nature of the modules allows the same set of tools,
and hence, the same visual program to be applied to dis-
parate data sets without intervention by the user. For ex-
ample, Isosurface computes surfaces from three-dimen-
sional data, lines from two-dimensional data, and points
from one-dimensional data, independently of the type of

266

mesh structure or space within which the data are embed-

Figure 6. Simple Data Explorer Visual Program Applied to an
Irregular Two-Dimensional Data Set.

Module Toolkit

The collection of polymorphic modules in Data
Explorer provides various computational tools for the
user. They support a number of realization techniques for
generating renderable geometry from data. These include
color and opacity mapping (e.g., for surface and volume
rendering), isosurfaces, histograms, two-dimensional and
three-dimensional plotting, surface deformation, etc. for
scalar data. For vector data, arrow plots, streamlines,
streaklines, etc. are provided. Realizations may be anno-
tated with ribbons, tubes, axes, glyphs, text and display
of data locations, meshes and boundaries. Data probing,
object picking, arbitrary surface and volume sampling,
and arbitrary cutting/mapping planes are supported. Data
Explorer includes a number of non-graphical operations
such as standard mathematical functions, univariate statis-
tics and image processing. Field/vector operations such
as divergence, gradient and curl, dot and cross products,
etc. are provided. Non-gridded or scattered data may be in-
terpolated to an arbitrary grid or triangulated. The length,
area or volume of various geometries may also be com-
puted. Tools for data manipulation such as removal of
data points, subsetting by position, sorting,
sub/supersampling, grid construction, mapping, interpola-
tion, regridding, transposition, etc. are available. The data
structures that support the data model may also be manip-~
ulated and queried at the module level.

Data-Flow Execution in Data Explorer

A number of problems associated with the data-flow ex-
ecution of graphs produced by visual programming and
their potential solutions have been discussed. The execu-
tion model of Data Explorer incorporates the two ap-
proaches (data cache and graph analysis) discussed earlier
as well as several others.

Iteration: The Data Cache

As described earlier, efficient execution of visualization
programs in an iterative context demands the retention of
results of a module. Hence, if the inputs to the module
have not changed on a subsequent execution of the graph,
the result can be re-used without re-computation. Data
Explorer extends this notion by incorporating a cache for
all partial results. This cache retains results from not
only the previous execution of the network, but from all
prior executions. This is subject to memory limitations
and a least-recently-used cache flushing strategy. Caching
may also be explicitly set by a user for each output of
each module to optimize memory utilization. For exam-
ple, in figures 5 and 6, if one only wanted to keep the
colored isosurface, then caching could be turned off explic-
itly for the upstream modules, Isosurface and Import.
Using information stored in the cache, one can not only
retrieve the results of parts of the network that have not
changed from the previous execution, but can also return
to previous states efficiently. If a module has executed
with a given set of inputs at some time in the past, and
one returns to those input settings, re-execution of the
module may be avoided by finding the result in the cache.

This capability is particularly useful in conjunction
with the Data Explorer Sequencer module. The Sequencer
provides a very simple and flexible animation capability --
an automatic method of managing a frame counter in a
graph, which is updated with each new execution based
upon a VCR-like interactor. The Sequencer includes but-
tons for stop, pause, run forward and run backward. It
also includes buttons to place it into single-step mode, to
cause it to continually loop and to do so in "palindrome"
mode. The settings window is used to specify the limits
of the sequence of numbers generated.

The first time the Sequencer is "played", it will cause
the network to be executed with new values for the
Sequencer output. Each execution, which may be time
consuming, will result in a new image being generated.
These images, which after all, are simply the result of a
rendering module, will be retained in the cache. When the
Sequencer is "re-played", the inputs to the network are the
same as they were for the first execution. Thus, the result
of the execution (the images) will be immediately avail-
able from the cache. Hence, Data Explorer provides an
automatic mechanism to create real-time animations even
when the computation of each frame is slower than real-
time. These features are illustrated in figures 7 and 8.

The value produced by the Sequencer can be used in a
number of ways. Figure 7 shows how the Sequencer may
be used to iterate through a time-dependent data set, caus-
ing the visualization to operate on each time step in turn,
resulting in an animation showing how the data vary with
time. The user may look at a daily sequence of one or
more isosurfaces of atmospheric temperature over the
carth's southern hemisphere as well as to interactively
change the value(s) specified to the Isosurface module.
The program also illustrates the support of a subroutine

267

hierarchy. Two of the tools, Projections and
WorldMapProjections, are not atomic operations but
macros, visual programs that include references to a num-
ber of modules and other macros. Alternatively, figure 8
shows how the Sequencer can be used to drive the iso-
value input to the Isosurface module. Note how the
Statistics and Compute modules are used to scale the in-
teger Sequencer values to vary through the actual data
range of the data. Polymorphism in the modules enables
such a network to operate on any scalar data for any data
type primitive.

The idea of storing results in cache can be extended to
include inputs to interactors, which correspond to user in-
terface widgets. Interactors used in this fashion are con-
sidered data-driven and thus, have state. Both figures 7
and 8 illustrate data-driven interactors. In figure 7, the
data range is used to automatically determine default set-
tings for the ScalarList interactor (e.g., minimum and
maximum values). In this case, the output of the
ScalarList interactor is used to set the values at which
isosurfaces should be computed. In figure 8, information
derived from statistics computed from the data is used to
define the maximum number of frames that can be gener-
ated by the Sequencer.

Conditional Execution

Data Explorer incorporates two mechanisms to control
execution flow through the network: the Switch and
Route modules. Switch essentially implements a case
construct, which has n+1 inputs: a selection value (from
1 to n) and n inputs of potential selections. Route is the
inverse of Switch, with n outputs and two inputs: a selec-
tor value (which may be a list of integers) and an object
to be passed to the selected n outputs.

As described earlier, implementing conditionals in data-
flow systems efficiently requires that unnecessary paths
through the network be skipped. In the case of Switch,
only the required input (if one is selected) is evaluated.
Route "kills off" the sub-networks depending on unse-
lected outputs until a Collect module joins a result de-
pending on an unselected output of the Route module
with valid results. Figure 9 shows how Route can be
used to allow the user to select a subset of visualization
techniques from a set implemented in the network.

Data Explorer also permits a network to control the ex-
ecution of aspects of the user interface such as control
panels (e.g., open/close), execution mode, image windows
(e.g., display mode), etc. internally, that ordinarily would
require user action. Coupled with tools for conditional
execution, portions of the interface can be made available
or hidden based upon user input or computation.

External Asynchronous Data Sources

Many applications of visualization tools call for a direct
interface with external data sources, especially ones that
generate data to be studied (e.g., a computational simula-
tion). The execution model of Data Explorer provides the

framework for real-time visualization of data generated
asynchronously by such a process. An external data
source is linked into a Data Explorer network by incorpo-
rating a communications module, which receives data
from the external source, often across a socket, and passes
the resulting data object to the module's output. This
module (and its descendents) will only run when the ex-
ternal data source has indicated that new data are available.
Data Explorer also provides a mechanism for direct ma-
nipulation of the executive (e.g., mode, passing data, error
handling, etc.) and the user interface (e.g., window visibil-
ity and mode, tracking mouse events, etc.) from an exter-
nal application. This allows control of Data Explorer
from other software and peer-to-peer communications.

Parallelism

The aggregation of all Data Explorer tasks representing
a collection of computational "modules" are mapped to a
single process with intratask parallelism. Under user con-
trol (i.e., within the user interface client), the server may
be distributed such that arbitrary portions of a Data
Explorer program may be specified to execute within a
slave server(s) process operating on another networked
system(s). Each of the server process(es) may contain any
number of tasks as with the (original) master process. In
addition, user-defined modules may be utilized via separate
executables from the server process(es) or data may be ac-
cepted via a pipe from another process.

In principle, the use of parallelism is an effective way
to improve performance. To achieve maximum benefit
the system must provide near-linear speed-up as one adds
processors. If the software only supports intermodule
parallelism, which can be consistent with a distributed ex-
ecution module, it may be very difficult to achieve effi-
cient parallel execution even on a modest coarse-grain ma-
chine for more than a handful of processors. Intramodule
parallelism is better suited to exploit such coarse-grain
parallelism. Visualization is a complex operation for
which the benefits of parallel execution may vary from
problem to problem. It is therefore important that a visu-
alization system provides both intermodule and intramod-
ule parallel execution modes, as does Data Explorer.
Intermodule parallelism is best suited for problems where
two or more computationally intensive operations can ex-
ecute independently on multiple processors. Linear speed-
up may not occur in this case due to the speed of commu-
nication between nodes for passing data. It is however,
the simplest mode of parallelism to implement, especially
on clusters of workstations and distributed memory mul-
tiprocessor systems. Intramodule parallelism is best
suited for the exploitation of shared-memory multiproces-
sor systems applied to problems which have a sequence of
one or more computationally intensive operations. By
enabling modules to execute in an intramodule manner,
computation can be accelerated on multiprocessor ma-
chines. This method also obviates the need to pass large
volumes of data across a network between multiple pro-

268

cessors. On symmetric multiprocessor systems, in-
tramodule parallelism is supported through a simple fork-
join shared-memory paradigm.

The Data Explorer executive process uses data domain
decomposition and task scheduling. The data domain is
partitioned by use of facilities in the data model whereby a
single field can be split into a group of smaller spatially
local self-contained regions (i.e., composite field). The
boundaries of the sub-fields are "grown" to avoid boundary
effects in subsequent realization operations. Each paral-
lelized module generates sub-tasks to operate on each par-
tition of the data. This approach also avoids the explicit

- use of locks, thereby reducing the possibility of a dead-

lock.
Preserving Explicit State

Some visualization applications require the retention of
state from one execution to the next, which cannot be
supported within the context of pure data-flow. Consider,
for example, the creation of a plot of data values at a
point while sequencing through a time series. In effect,
the state of the plot is retrieved from the prior execution,
appended with the new time-step results, the updated plot
is produced and the results are preserved by re-saving the
state for the next execution. This capability is provided
via two modules: Sez, which places an object into the
cache, and Get, which retrieves objects from the cache.
While Get and Set (cache) provides a simple mechanism
for storing such state, they do give rise to the same diffi-
culties outlined above for external data sources - the exe-
cution of Get depends on more than its inputs, it also de-
pends on whether the saved object has been changed.
Fortunately, the same solution can be utilized. Whenever
Set executes, it flags its paired Get to be run on the next
execution.

An application of Get and Set is illustrated in figure 10,
which shows a visual program that access a year's worth
of observations of global ozone one day at a time. The
Sequencer is used to specify the days to be examined.
One Get and Set pair is used, which is highlighted. For
each time step, a contour is determined at a specified
level, which is colored (blue to red) and labelled by the
day of the year. The Get and Set pair holds the accumu-
lated time series of annotated contours, which is appended
for each day in the series. The results up to the current
day are displayed as a geographic map, which showg the
evolution of the contour.

This approach can also be used to support true looping
inside a program, which is illustrated in figure 11.
Atmospheric temperature data are read and sliced by lati-
tude. A loop is then initiated via the ForEachMember
module, which computes the mean value for each slice
and accumulates it into a series. As with the previous ex-
ample, Get and Set are used to store the series for each it-
eration, but inside the loop. When the loop is finished,
which is signaled to two Route modules, two images are
produced, one showing a pseudo-color image of the tem-

perature data with a map overlay, and the other a plot of
the mean temperature in each latitude zone.

Extending Data-flow vs. Alternatives

Song and Golin [14] and Pang and Alper [10] have dis-
cussed the idea of using a fine-grain decomposition of
computation specified through data-flow, instead of the
more typical coarse-grain implementations. This shows
promise as a more efficient way to use memory and com-
putational resources for operations that may be done seri-
ally on data subsets (e.g., isosurface, rendering).
Unfortunately, this approach does not appear to be practi-
cal for specification of applications requiring dozens or
hundreds of individual tasks under conditional execution,
where saving state may be desirable, parallelized imple-
mentation of specific operations, or operations that are
not easily decomposed in a fine-grain manner (e.g., streak-
lines - flow integration across multiple time steps of an
unsteady vector field). Conventional data-flow with the
class of extensions discussed earlier appears to be more ef-
fective at addressing such problems. In contrast, this ap-
proach may be very useful for supporting simpler visual-
ization and analysis tasks on small machines (e.g., PCs).

Hibbard et al [7] in VIS-AD offers the virtues of an uni-
form and extensible data model within a programming en-
vironment that provides for sufficient control of opera-
tions to build realistic applications. However, it operates
at a lower-level than Data Explorer and other data-flow
tool kits with only basic graphics, data structure and
computational primitives. Although VIS-AD does pro-
vide the facilities available in the extended data-flow archi-
tecture of Data Explorer with greater flexibility, it is at a
cost of a larger learning curve and greater effort to build
complex visualization and analysis operations. But it
does provide an easier mechanism than a traditional pro-
gramming language to develop new algorithms because of
its inherent data model and interactive graphics primitives.

Conclusions

Traditional implementations of a data-flow execution
model are quite limited when applied to problems of real-
istic complexity. Fortunately, a number of extensions to
such a model are practical way of resolving these difficul-
ties while still preserving the virtues of "pure data-flow".
Extensions such as graph evaluation, conditional execu-
tion and caching have been embodied in the IBM
Visualization Data Explorer software package. Efforts are
continuing to enhance the implementation of the execu-
tion model in Data Explorer in response to user require-
ments for data analysis and visualization.

Acknowledgements

The authors thank David Watson of the IBM UK
Scientific Centre, and Kevin McAuliffe, David Wood and
Richard Sefecka of the IBM Thomas J. Watson Research

269

Center for their thoughtful reviews of and suggestions for
this paper.

References

[1] Abram, G. and T. Whitted. "Building Block Shaders".
Computer Graphics, 24, n. 4, pp. 283-288, August
1990.

[2] Arvind and Brobst, S. "The Evolution of Dataflow
Architectures from Static Dataflow to P RISC".
International Journal of High Speed Computing,
5, n. 2, pp. 125-153, June 1993.

[3] Burnett, M. M., M. J. Baker, C. Bohus, P. Carlson, S.
Yang and P. van Zee. "Scaling Up Visual Programming

Languages". IEEE Computer, 28, n. 3, pp. 45-54, March
1995.
[4] Dyer, D. S. "A Dataflow Toolkit for Visualization".

IEEE Computer Graphics and Applications, 10, n.
4, pp. 60-69, July 1990.

[5] Haber, R., B. Lucas and N. Collins. "A Data Model for
Scientific Visualization with Provisions for Regular and
Irregular Grids". Proceedings IEEE Visualization '91
Conference, pp. 298-305, October 1991.

[6] Haeberli, P. "ConMan: A Visual Programming
Language for Interactive Graphics". Computer Graphics,
22, n. 4, pp. 103-111, August 1988.

[7] Hibbard, W., C. R. Dyer and B. Paul. "Display of
Scientific Data Structures for Algorithm Visualization".
Proceedings IEEE Visualization '92, pp. 243-249,
October 1992.

[8] Kass, M. "CONDOR: Constraint-Based Dataflow".
Computer Graphics, 26, n. 2, pp. 321-330, July 1992.

[9] Lucas, B., G. D. Abram, N. S. Collins, D. A. Epstein,
D. L. Gresh, and K. P. McAuliffe. "An Architecture for a
Scientific Visualization System". Proceedings IEEE
Visualization '92, pp. 107-113, October 1992.

[10] Pang, A. and N. Alper. "Max & Match: A
Construction Kit for Visualization". Proceedings IEEE
Visualization '94, pp. 302-309, October 1994.

[11] Rasure, J. and C. Wallace. "An Integrated Data Flow
Visual Language and Software Development Environment".
Journal of Visual Languages and Computing, 2,
pp. 217-246, 1991.

[12] Ribarsky W., R. Brown, T. Myerson, S. Smith and L.
Treinish. "Object-Oriented, Dataflow Visualization Systems
- A Paradigm Shift?". Proceedings IEEE Visualization
'92, pp. 384-387, October 1992,

[13] Silicon Graphics Computer Systems. IRIS
Explorer User's Guide, Document 007-1369030, 1993.

{14] Song, D. and E. Golin. "Fine-Grain Visualization in
Dataflow Environments". Proceedings IEEE
Visualization '93, pp. 126-133, October 1993.

[15] Upson, C., T. Faulhaber, D. Kamins, D. Laidlaw, D.
Schlegel, J. Vroom, R. Gurwitz and A. van Dam. The
Application Visualization System: A Computational
Environment for Scientific Visualization. IEEE Computer
Graphics and Applications, 9, n. 4, pp. 30-42, July
1989.

I8CCP CR Cloud Top Shell

June 1986
Pseudo-Color ~ Teraperairs (180-330KY Btirface Doformation = Pressure (80-1000mb)

Temperature KO

Figure 4. Several Atmospheric Parameters Figure 7. Adjustment of an Input Parameter and
Shown Simultaneously. Sequencing through a Time Series.

i i

. Srsinn i i
Figure 8. Use of the Data Explorer Sequencer Figure 9. Flow Control in a Data Explorer
for Iteration.

Program Using the Swifch and Route Modules.

Figure 10. Preserving Staté in a Data plorer Figure 11. Looping in a Data Explorer Program.
Program Using the Gef and Sef Modules.

270

